Ingrid Winkler

Title. Mobilisation of reconstituting HSC is boosted by E-selectin antagonist GMI-1271

Blood
Bone marrow

Active
Dormant

myeloid
lymphoid

Active
Dormant

myeloid
lymphoid
Iwasaki and Suda, 2010,
HSC niche chapter, Stem Cell Biology, Humana press
HSC

Iwasaki and Suda, 2010,
HSC niche chapter, Stem Cell Biology, Humana press
Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance

Ingrid G Winkler, Valerie Barbier, Bianca Nowlan, Rebecca N Jacobsen, Catherine E Forri, John T Patton, John L Magnani & Jean-Pierre Lèvesque
Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance

Ingrid G Winkler¹, Valerie Barbier¹, Bianca Nowlan², Rebecca N Jacobsen²³, Catherine E Forri John T Patton⁴, John L Magnani⁵ & Jean-Pierre Lévesque²³

October 2012
Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance

Ingrid G Winkler¹, Valérie Barbier¹, Bianca Nowlan², Rebecca N Jacobsen²,³, Catherine E Forri John T Patton¹, John L Magnani¹ & Jean-Pierre Lèvesque²,³

HSC proliferation

8-fold less HSC turnover in E⁻/⁻
Vascular E-selectin - low levels in steady-state

Endothelial cells in: control mice

3% positive in steady-state
Vascular E-selectin - increases following stress

Endothelial cells in:
- control mice
- Post-irradiation

E-selectin
G-CSF increases E-selectin expression at HSC vascular niche

% E-selectin +, BM endothelial cells

G-CSF alone

G-CSF 4d
250ug/kg/day

Australia
G-CSF increases E-selectin expression at HSC vascular niche

- **G-CSF alone**
 - % E-selectin +, BM endothelial cells:
 - 0% at 0 days
 - 4% at 4 days
 - 21% at 6 days
 - 14% at 10 days

- **CYP + G-CSF**
 - % E-selectin +, BM endothelial cells:
 - 0% at 0 days
 - 46% at 5 days
 - 14% at 6 days
 - 4% at 8 days

Summary:
- G-CSF alone increases E-selectin expression over time in BM endothelial cells.
- CYP + G-CSF shows a marked increase in E-selectin expression, particularly at 5 days.
G-CSF increases E-selectin expression at HSC Vascular niche
Absence of E-selectin improves mobilisation of reconstituting cells
Absence of E-selectin improves mobilisation of reconstituting cells

- CFC per mL blood
 - WT
 - Esel\(^{-/-}\)
 - Control
 - G-CSF

- % donor CD45.2\(^+\), in blood
 - WT
 - Esel\(^{-/-}\)
 - G-CSF

- Reconstitution Units, mL blood
 - WT
 - Esel\(^{-/-}\)
 - G-CSF

Absence of E-selectin improves mobilisation of reconstituting cells

- Absence of E-selectin improves mobilisation of reconstituting cells.

Methods:
- G-CSF 125mg/kg BID
- 25μL blood + 2x10^5 congenic WBM
- WT vs. Esel\(^{-/-}\)

Results:
- CFC per mL blood:
 - Control: WT > Esel\(^{-/-}\)
 - G-CSF: WT < Esel\(^{-/-}\)

- % donor CD45.2\(^+\), in blood:
 - WT: 39%
 - Esel\(^{-/-}\): 76%

- Reconstitution Units, mL blood:
 - WT: 66
 - Esel\(^{-/-}\): 634

Conclusion:
- Absence of E-selectin improves the mobilisation of reconstituting cells in the blood.

Australia
Therapeutic blockade of E-selectin boosts reconstitution potential

GMI-1271 – synthetic E-selectin GlycoMimetic antagonist. Specifically blocks E-selectin binding site

G-CSF 250μg/kg/d ± GMI-1271 20mg/kg BID

Australia
Therapeutic blockade of E-selectin boosts reconstitution potential

GMI-1271 – synthetic E-selectin GlycoMimetic antagonist.

G-CSF 250ug/kg/d ± GMI-1271 20mg/kg BID

25μL blood + 2x10⁵ congenic WBM in long-term competitive transplant assay

% donor CD45.2+ in recipient blood

Reconstitution units, per mL donor blood

G-CSF 250ug/kg/d ± GMI-1271 20mg/kg BID

In long-term competitive transplant assay

GMI-1271 – synthetic E-selectin GlycoMimetic antagonist.

Australia
Limiting dilution transplant

% donor CD45.2+ reconstitution (recipient blood, 16 weeks)

- 25 uL blood
- 5 uL blood
- 1 uL blood

G-CSF
G-CSF + GMI-1271

< 0.5% negative threshold

+ 2x10^5 congenic BM cells in Long-term Reconstitution Assay
Limiting dilution transplant

25 uL blood

G-CSF

G-CSF + GMI-1271

% donor CD45.2+ reconstitution (recipient blood, 16 weeks)

36%

0.1

100%

G-CSF

G-CSF + GMI-1271

5 uL blood

17%

1%

10%

100%

G-CSF

G-CSF + GMI-1271

1 uL blood

0.3%

1%

10%

100%

G-CSF

G-CSF + GMI-1271

Reconstitution Units per mL mobilised blood (Poisson Distribution)

462

21

G-CSF

G-CSF + GMI-1271

+ 2x10^5 congenic BM cells in Long-term Reconstitution Assay

Limiting dilution transplant

G-CSF 250ug/kg/day

± GMI-1271 20mg/kg BID

25uL

5uL

1uL

Australia
Hypothesis.

E-selectin as a ‘gate-keeper’ dampening potential of migratory HSC

....compromises reconstituting potential of 95% of harvested peripheral blood HSC
Transwell assays – in vitro recapitulation

- Count & phenotype,
- Transplant for reconstitution potential

BM KIT+ HSPC, 10^6
(GCSF 3d & GMI-1271 4d treated CD45.2+ donor)

- SDF-1

Control IgG Fc-coated

E-selectin-Fc coated

** Mannwhitney Australia
Transwells – recapitulate in vitro

BM KIT^+ HSPC, 10^6 (GCSF 3d & GMI-1271 4d treated CD45.2 donor)

Control IgG Fc-coated

E-selectin-Fc coated

LKS^+ , lower well

IgG-Fc Esel-coating

SDF-1
Transwells – recapitulate in vitro

BM KIT+ HSPC, 10^6
(GCSF 3d & GMI-1271 4d treated CD45.2 donor)

** mannwhitney

Long-term competitive repopulation assay. ½ lower well transplanted in competition with 2x10^5 congenic BM cells.
SUMMARY

Key Findings

• G-CSF ↑ E-selectin expression

• Interaction with E-selectin during transmigration compromises ~95% of HSC

......unexpected disadvantage with current mobilisation regimes.....

Remedy

• administer E-selectin antagonist together with G-CSF
SUMMARY

Key Findings

- G-CSF ↑ E-selectin expression
- Interaction with E-selectin during transmigration compromises ~95% of HSC

......unexpected disadvantage with current mobilisation regimes.....

Remedy

- administer E-selectin antagonist together with G-CSF

E-selectin. A vascular gate-keeper dampening potential of migratory HSC
Thank you for listening…

Collaborators
Leukaemia -- PACE, Australia
Tom Gonda
Diwakar Pattabiraman
Haematologists - PAH & Mater, Australia
Andrew Perkins
Paula Marlton
GlycoMimetics – MA, USA
John Magnani – Glycobiologist

Financial support
Cancer Council of Queensland.
Smart Futures, Qld Govt
NH&MRC CDF fellowship
GlycoMimetics

HSC biology team
Stem Cells & Cancer team