William E. Fogler, Theodore A.G. Smith, Rachel K. King, John L. Magnani GlycoMimetics, Inc., Rockville, MD

Abstract

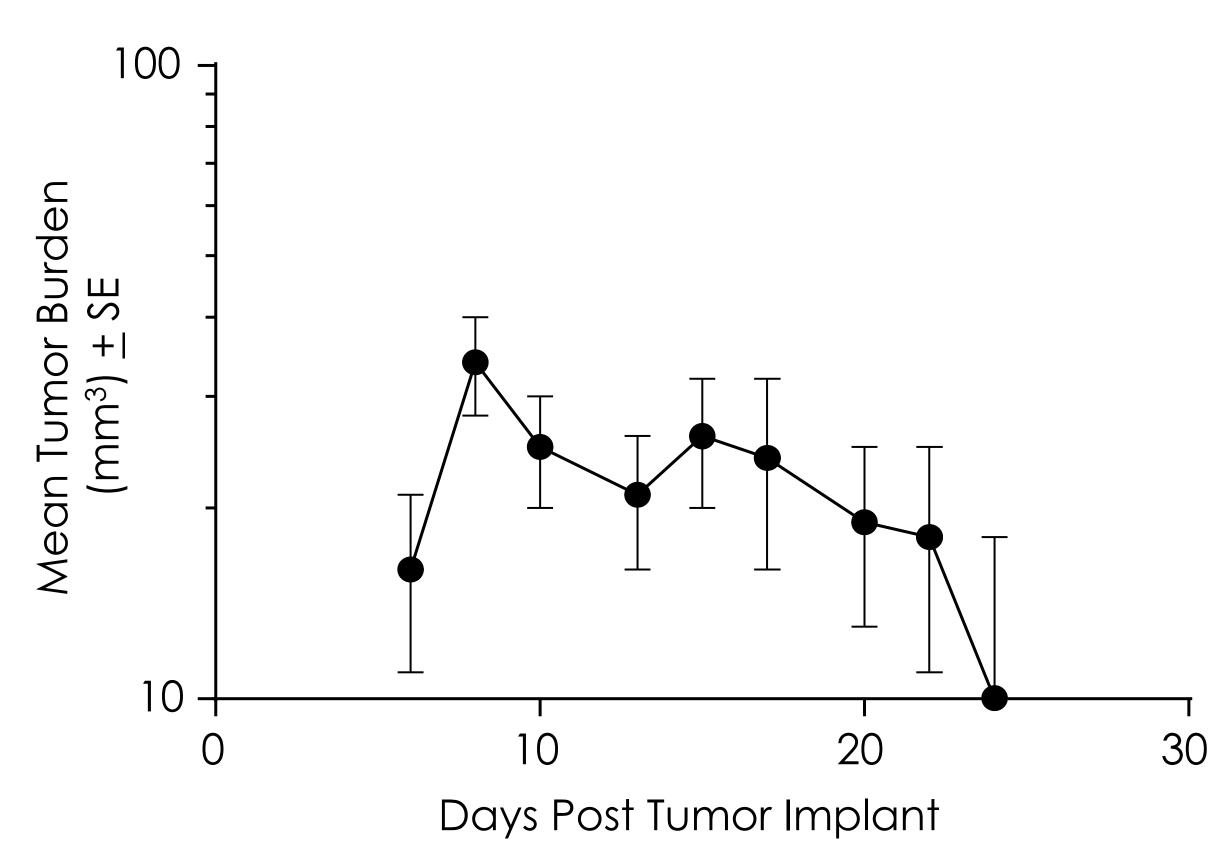
Marrow infiltrating lymphocytes (MILs) primed to tumor antigens have been described in patients with hematologic malignancies and in metastatic disease arising from carcinomas. The presence of tumor-reactive MILs in these patients has suggested the possibility of their utilization in T-cell immunotherapeutic approaches. Inherent in this approach are considerations that mediate MIL interactions with the microenvironment and how these may be governed for adoptive or active immunotherapy. Both E-selectin and CXCR4 are known to regulate the homing and retention of T cells to the bone marrow. GMI-1271 and GMI-1359 are potent, small molecule glycomimetic antagonists of E-selectin and E-selectin/CXCR-4, respectively. GMI-1359 is a potent small molecule glycomimetic dual antagonist targeting E-selectin and CXCR-4. In the present studies tumor-specific MILs were established in BALB/c mice that had been induced to reject the syngeneic CT26 colon carcinoma via treatment with anti-CTLA-4 T cell checkpoint antibody, and the subsequent effects of antagonizing E-selectin and/or CXCR4 with GMI-1271 or GMI-1359 on the mobilization and distribution of these bone-marrow derived tumor-specific CD8+ T cells, were determined. CT26-immune mice were treated for three days with saline, GMI-1271 (40 mg/kg), or GMI-1359 (40 mg/kg) and 12 hours following the last injection, the phenotype and functional activity of CD8+ T cells were determined in bone marrow and peripheral blood. Additional controls included CT26-immune mice treated with G-CSF (0.125 mg/kg) and tumor naïve mice treated with saline. Treatment of mice with GMI-1271 and to a greater extent with GMI-1359 lead to an approximate 3-4 fold increase in CD8+CD62L+CD44- naïve and CD8+CD62L+CD44+ central memory T cells in peripheral blood. This was not observed following treatment of tumor-immune mice with G-CSF. Treatment of mice with GMI-1271 or GMI-1359 did not affect distribution of CD8+CD62L-CD44+ effector memory T cells in peripheral blood. The increase in percentages of CD8+ naïve and central memory T cells in peripheral blood following treatment with GMI-1271 or GMI-1359 functionally correlated with increased production of IFN-γ ex vivo in response to irradiated CT26 tumor cells or the immunodominant CT26 peptide, AH-1. Collectively these results demonstrate the mobilization or redistribution of marrow infiltrative tumor specific CD8+ T cells into peripheral blood as a consequence of E-selectin and/or E-selectin and CXCR4 antagonism. Once in the periphery, these MILs could (1) be collected for adoptive immunotherapy approaches or (2) serve as a systemic augmentation of T cells for combination with immune stimulants as a foundation to boost active immunotherapy.

Background

- In the bone marrow (BM), infiltrating lymphocytes (MIL) primed to tumor antigens have been described in hematological malignancies and in metastatic disease arising from carcinomas.
- Both E-selectin and CXCR4 are known to regulate the homing and retention of T cells to the BM.
- Strategies to block E-selectin and/or CXCR4 may decrease retention/homing of T cells in the BM and increase their distribution into peripheral blood thereby creating a more favorable compartment for either adoptive or active immunotherapy approaches.

Results

Table 1. Binding of GMI-1271 and GMI-1359 against E-selectin or CXCR4


GMI-1359 (dual E-selectin/CXCR4 antagonist) and an E-selectin specific antagonist (ANT) were assessed for inhibition of (1) sialyl LeX binding to immobilized E-selectin and (2) CXCR4 binding to Raji cells. IC50's (μ M) were determined and summarized in Table 1.

Compound	E-selectin	CXCR4
GMI-1359	1.0	0.5
GMI-1271	2.4	>10000

Summary (Table 1). The small molecule glycomimetic, GMI-1359, inhibits ligand binding to both E-selectin and CXCR4. As previously reported, GMI-1271 is a selective inhibitor of ligand binding to E-selectin. GMI-1359 and GMI-1271 were subsequently evaluated for redistribution (mobilization) of bone marrow infiltrative, tumor specific CD8+ T cells.

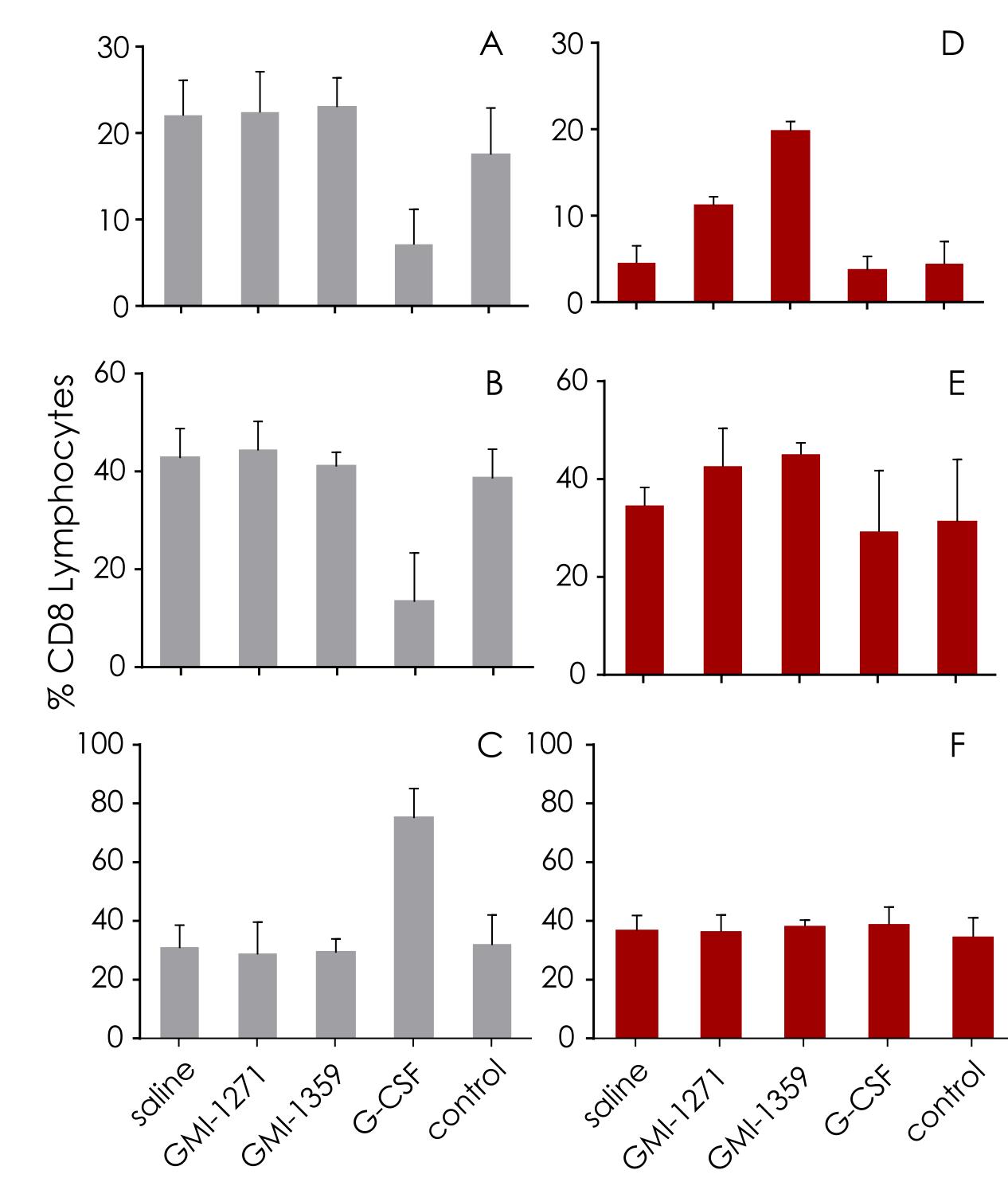
Figure 1. Generation of Tumor Primed Mice with anti-CTLA4 in the CT26 Colon Carcinoma Model

Female Balb/c mice (7 wks) received subcutaneous injections with CT26 colon carcinoma cells (5×10^5 /mouse). Beginning 3 days post injection, mice were treated with 10 mg/kg anti-CTLA-4 (clone 9D9) on days 3, 6, 10, 13 and 17. Tumor volumes were measured twice/week from day 0 to day 24 and the mean tumor burden (\pm SE) was calculated to assess response.

Summary (Figure 1).

- Treatment of Balb/c mice with anti-CTLA4 regresses small CT-26 tumors and tumor-free mice are resistant to tumor re-challenge.
- This model was chosen to study tumor-reactive MILs and their mobilization by GMI-1271 and GMI-1359.

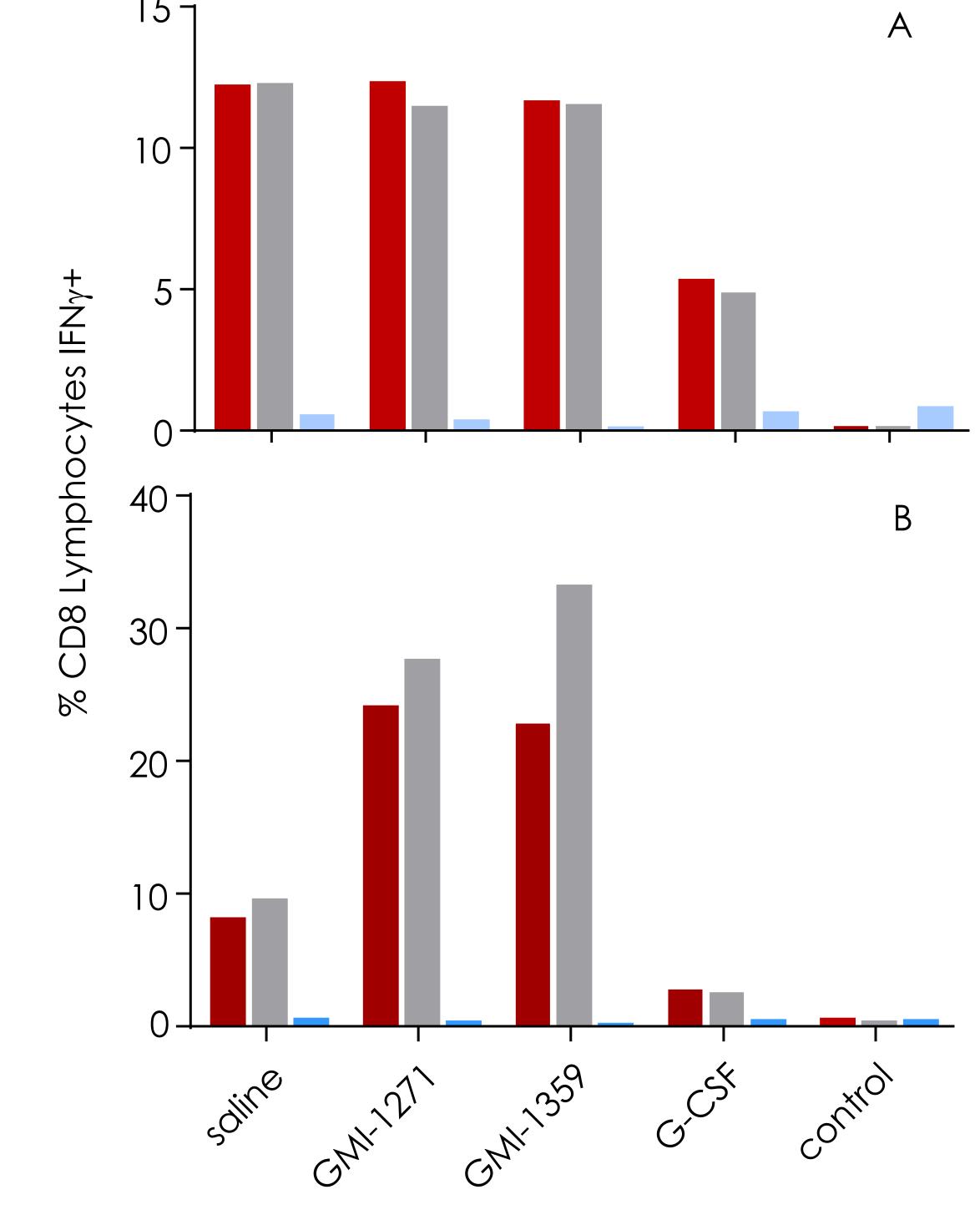
Results


Table 2. Study Protocol to Assess Mobilization of Tumor-primed, Marrow Infiltrating Lymphocytes with GMI-1271, GMI-1359 or G-CSF

On day 25, mice rendered tumor free with anti-CTLA-4 treatment, were distributed into 4 groups (n=5 mice/group) and treated as described. G-CSF treatment was included for comparison.

Group	Treatment Regimen	Parameters (12 hrs post final dose)
saline	10 mL/kg IP bid x 3d	 PB & BM CD8 phenotype Tumor specific PB & BM in
GMI-1271	40 mg/kg IP bid x 3d	
GMI-1359		vitro responses: defined as CD8+/IFNγ+ following
G-CSF	0.125 mg/kg SC bid x 3d	tumor pulse

Figure 2. Distribution of CD8 T Cells in CT26-Immune Balb/c Mice following Administration of GMI-1271, GMI-1359 or G-CSF


Twelve hrs post final dose, bone marrow (■) and peripheral blood (■) from individual mice were processed for flow cytometry. Control, tumor naïve mice were included. The percentage of CD62L+, CD44- (A, D), CD62L+, CD44+ (B,E) and CD62L-, CD44+ (C,F) were determined in the total CD8+ T cell gate and summarized below.

Results

Figure 3. Mobilization of Tumor-primed Marrow Infiltrating Lymphocytes into Peripheral Blood with GMI-1271 and GMI-1359

Bone marrow (A) and peripheral blood (B) from each treatment group were pooled and the percentage of IFN γ + CD8 lymphocytes was determined by flow cytometry following stimulation with irradiated CT26 cells (\blacksquare), AH-1 peptide (\blacksquare) or media alone (\blacksquare).

Summary (Figure 2 and 3).

- Compared to saline treatment, GMI-1271 and GMI-1359 mobilizes CD62L+ MILs into peripheral blood by 2- and 4-fold, respectively.
- These mobilized MILs are primed to respond to tumor antigens and produce IFN γ .

Conclusion

- In this preclinical model, glycomimetic inhibitors of E-selectin (GMI-1271) or E-selectin and CXCR4 (GMI-1359), was shown to mobilize and distribute tumor-primed MILs into peripheral blood.
- Mobilized MILs could (1) be collected for engineering of T cells or (2) serve as a systemic augmentation of T cells for combination with immune stimulants and the development of new strategies for immunotherapy

