The E-selectin Inhibitor GMI-1687 Restores Normal Blood Flow in a Mouse Model of Sickle Cell Vaso-occlusion

John L. Magnani
CSO & SVP
Well-Characterized Mechanisms Critical to Inflammatory Response Driving VOC

- First step in extravasation from bloodstream—selectins bind immune cells to endothelium
- Neutrophils and monocytes are activated when they bind to selectins
 - Changes β2 integrins to high affinity conformation
 - Allows subsequent adhesion in the extravasation process and adhesion to other cells
- Activation through selectins also leads to production of microparticles from neutrophils, rich in tissue factor, and can promote thrombus formation

Development of VOC
E-selectin Plays a Dominant Role in Sickle Cell VOC

Inhibiting E-selectin Catch Bonds

- Blocking only E-selectin, not P-selectin, Fully Inhibits RBC binding to Immobilized Leukocytes During VOC

- Soluble E-selectin, Not Soluble P-selectin, Correlates with Poor Survival ($P = 0.002$)

In contrast, “...mortality was negatively and not significantly related to log10 sP-selectin values ($P = 0.36$)”

Rolling on E-selectin, not P-selectin, Activates Arrest and Immobilization

- E-selectin but not P-selectin induces transition from rolling to arrest.
- Blocking L-selectin but not PSGL-1 abrogates arrest.

Soluble E-selectin, Not Soluble P-selectin, Correlates with Poor Survival ($P = 0.002$)

E-selectin Binding to the Carbohydrates (Sialyl Lex) Expressed on L-selectin Induces High Affinity Conformation of β2-Integrin both Directly and Through TLR4

E-selectin Plays a Dominant Role in VOC

![Diagram showing the role of E-selectin in VOC](image)

E-selectin inhibition blocks the conformational change to High Affinity Integrin receptors both directly and through MRP8/14 signaling

Selectin catch-bonds mechanotransduce integrin activation and neutrophil arrest on inflamed endothelium under shear flow

Vasilios A. Monikis, Shannon Chase, Ted Wun, Elliot L. Chaikof, John L. Magnani, and Scott I. Simon

BLOOD, 9 NOVEMBER 2017 • VOLUME 130, NUMBER 19

GlycoMimetics, Inc.
Binding Constant of GMI-1687 for E-selectin as Determined by Surface Plasmon Resonance

K_D = 2.3 nM

<table>
<thead>
<tr>
<th>GMI 1687 conc (nM)</th>
<th>Req (RU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.500</td>
<td>7.800</td>
</tr>
<tr>
<td>1.000</td>
<td>18.200</td>
</tr>
<tr>
<td>2.000</td>
<td>31.600</td>
</tr>
<tr>
<td>4.000</td>
<td>46.800</td>
</tr>
<tr>
<td>8.000</td>
<td>49.000</td>
</tr>
<tr>
<td>16.000</td>
<td>54.000</td>
</tr>
<tr>
<td>40.000</td>
<td>57.100</td>
</tr>
</tbody>
</table>

Best-fit values:
- **Bmax**: 62.07
- **Kd**: 2.278

Std. Error:
- **Bmax**: 1.321
- **Kd**: 0.2208

95% Confidence Intervals:
- **Bmax**: 58.84 to 65.30
- **Kd**: 1.738 to 2.819

R square: 0.9944
GMI-1687 is Totally Bioavailable through a Subcutaneous Dose

GMI-1687
E-Sel $K_D = 2.3$ nM

<table>
<thead>
<tr>
<th>Route</th>
<th>Dose (mpk)</th>
<th>$T_{1/2}$ (hr)</th>
<th>MRT (hr)</th>
<th>C_{max} (ng/mL)</th>
<th>T_{max} (hr)</th>
<th>Cl (L/hr/kg)</th>
<th>V_d (L/kg)</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>5</td>
<td>0.86</td>
<td>0.45</td>
<td>22209</td>
<td>-</td>
<td>0.62</td>
<td>0.28</td>
<td>-</td>
</tr>
<tr>
<td>SC</td>
<td>5</td>
<td>2.9</td>
<td>1.5</td>
<td>5127</td>
<td>0.67</td>
<td>-</td>
<td>-</td>
<td>126</td>
</tr>
</tbody>
</table>
Assessment of GMI-1687 for Attenuation of Vaso-Occlusion in Nude Mice Given Human SSRBCs

- TNFα 0.5 mg i.p.
- Saline or GMI-1687
- Fluorescence-labeled (rhodamine 6G) Human SSRBCs
- Recording of window chamber (cremaster muscle)

Parameters
- SSRBC adhesion
- Blood flow
- Vessel occlusion

R. Zennadi, Duke University
Comparative Activity of GMI-1687 following IV or SC Administration on Adherent hSSRBCs in Inflamed Venules

GMI-1687 IV

- **Vehicle**: Adherent hSSRBCs (RFU) = 1.00
- **40 μg/Kg**: Adherent hSSRBCs (RFU) = 0.75
- **80 μg/Kg**: Adherent hSSRBCs (RFU) = 0.50

***P<0.001

GMI-1687 SC

- **Vehicle**: Adherent hSSRBCs (RFU) = 1.00
- **40 μg/Kg**: Adherent hSSRBCs (RFU) = 0.75
- **80 μg/Kg**: Adherent hSSRBCs (RFU) = 0.50

****P<0.0001

R. Zennadi, Duke University
Comparative Activity of GMI-1687 following IV or SC Administration on Blood Flow in Inflamed Venules

GMI-1687 IV

GMI-1687 SC

- Normal blood flow
- Slow blood flow
- Occluded vessel

R. Zennadi, Duke University
Assessment of GMI-1687 for Attenuation of Vaso-Occlusion in the Townes Mouse Model of Human SCD

- The Townes mice have a transgene containing normal human α, γ, δ globins and sickle β globin and targeted deletions of murine α & β globins (α-/-, β-/-). This mouse model of SCD expresses exclusively human sickle hemoglobin.
 - ~100% sickle RBCs
 - Erythrocytes have significantly decreased osmotic fragility and increased dynamic rigidity
 - Anemic with hematocrits ~65% of WT mice
 - Baseline inflammation as evidence by vascular congestion, atrophy, fibrosis, and infarct found in lungs, liver, spleen and kidneys

PE-anti-mouse TER119

![Graph showing experiment timeline](image)

TNFa (0.5 μg i.p.)

Saline or GMI-1687 IV

Recording of window chamber
GMI-1687 Attenuates Sickle RBC Adhesion (A) and Vessel Occlusion (B) in the Townes Mouse Model of Human SCD

R. Zennadi, Duke University
Summary

- E-selectin plays a dominant role initiating the vaso-occlusive crisis in sickle cell disease.
- GMI-1687 is a highly potent small molecule antagonist for E-selectin with a binding constant (K_D) of 2.3 nM.
- GMI-1687 is completely bioavailable through subcutaneous dosing, opening up the possibility of self-administration.
- In a mouse model of vaso-occlusive crisis using human sickle rbc’s in nude mice, GMI-1687 blocks adherence of these cells and normalizes blood flow.
- In a transgenic mouse model containing human sickle hemoglobin (Townes mice), treatment with GMI-1687 inhibits induced vaso-occlusive crisis by blocking adherence of cells and normalizing blood flow.
- GMI-1687 contains desired properties that are compatible with very early treatment of a crisis outside the hospital setting.