Restoration of Normal Blood Flow in Mouse Models of Sickle Cell Vasocclusion Following Intravenous or Subcutaneous Administration of a Highly Potent E-selectin Specific Inhibitor

John L. Magnani
GlycoMimetics, Inc

Co-authors: Madham Thamilarasan*, William E. Fogler and Rahima Zennadi*

*Duke University

Session Name: 113, Hemoglobinopathies, Excluding Thalassemia: New Insights into Sickle Cell Disease Pathophysiology
Saturday, December 5th, 2020, Session Time 2:00PM – 3:30 PM (time 2:45PM)
Conflict of Interest

John L. Magnani is an employee and stockholder in GlycoMimetics, Inc.
Well Characterized Mechanisms Critical to Inflammatory Response Driving VOC

♦ First step in extravasation from bloodstream—selectins bind immune cells to endothelium

♦ Neutrophils and monocytes are activated when they bind to selectins
 - Changes β2 integrins to high affinity conformation
 - Allows subsequent adhesion in the extravasation process and adhesion to other cells

♦ Activation through selectins also leads to production of microparticles from neutrophils, rich in tissue factor, and can promote thrombus formation

Development of VOC
E-selectin Plays a Dominant Role in Sickle Cell VOC

Inhibiting E-selectin Catch Bonds

Blocking only E-selectin, not P-selectin, Fully Inhibits RBC binding to Immobilized Leukocytes During VOC

In contrast, "...mortality was negatively and not significantly related to log10 sP-selectin values (P = 0.36)"

Rolling on E-selectin, not P-selectin, Activates Arrest and Immobilization

Soluble E-selectin, Not Soluble P-selectin, Correlates with Poor Survival (P = 0.002)
E-selectin Binds Sialyl Le\(^x\) on L-selectin of PMNs and Activates \(\beta-2\) Integrins Directly and Through TLR4

E-selectin inhibition blocks the conformational change to High Affinity Integrin receptors both directly and through MRP8/14 signaling

Selectin catch-bonds mechanotransduce integrin activation and neutrophil arrest on inflamed endothelium under shear flow

Vasilios A. Morikis, Shannon Chase, Ted Wun, Elliot L. Chaikof, John L. Magnani, and Scott I. Simon

BLOOD, 9 NOVEMBER 2017 • VOLUME 130, NUMBER 19
Binding Constant of GMI-1687 for E-selectin as Determined by Surface Plasmon Resonance

\[K_D = 2.3 \text{ nM} \]

<table>
<thead>
<tr>
<th>GMI 1687 conc (nM)</th>
<th>Req (RU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.500</td>
<td>7.800</td>
</tr>
<tr>
<td>1.000</td>
<td>18.200</td>
</tr>
<tr>
<td>2.000</td>
<td>31.600</td>
</tr>
<tr>
<td>4.000</td>
<td>46.800</td>
</tr>
<tr>
<td>8.000</td>
<td>49.000</td>
</tr>
<tr>
<td>16.000</td>
<td>54.000</td>
</tr>
<tr>
<td>40.000</td>
<td>57.100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Req (RU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One site – Specific binding</td>
<td></td>
</tr>
<tr>
<td>Best-fit values</td>
<td></td>
</tr>
<tr>
<td>Bmax</td>
<td>62.07</td>
</tr>
<tr>
<td>Kd</td>
<td>2.278</td>
</tr>
<tr>
<td>Std. Error</td>
<td>1.321</td>
</tr>
<tr>
<td>95% Confidence Intervals</td>
<td></td>
</tr>
<tr>
<td>Bmax</td>
<td>58.84 to 65.30</td>
</tr>
<tr>
<td>Kd</td>
<td>1.738 to 2.819</td>
</tr>
</tbody>
</table>

R square 0.9944
GMI-1687 is Fully Bioavailable Through Subcutaneous Dosing

<table>
<thead>
<tr>
<th>Route</th>
<th>Dose (mpk)</th>
<th>$T_{1/2}$ (hr)</th>
<th>MRT (hr)</th>
<th>C_{max} (ng/mL)</th>
<th>T_{max} (hr)</th>
<th>Cl (L/hr/kg)</th>
<th>V_{ss} (L/kg)</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>5</td>
<td>0.86</td>
<td>0.45</td>
<td>22209</td>
<td>-</td>
<td>0.62</td>
<td>0.28</td>
<td>-</td>
</tr>
<tr>
<td>SC</td>
<td>5</td>
<td>2.9</td>
<td>1.5</td>
<td>5127</td>
<td>0.67</td>
<td>-</td>
<td>-</td>
<td>126</td>
</tr>
</tbody>
</table>
Assessment of GMI-1687 for Attenuation of Vaso-occlusion in Nude Mice Given Human SSRBCs

- TNFα 0.5 mg i.p.
- Fluorescence-labeled (rhodamine 6G) Human SSRBCs
- Saline or GMI-1687
- Recording of window chamber (cremaster muscle)

Parameters:
- SSRBC adhesion
- Blood flow
- Vessel occlusion

R. Zennadi, Duke University
Comparative Activity of GMI-1687 following IV or SC Dosing on Adherent hSSRBCs in Indflammed Venules

R. Zennadi, Duke University
Comparative Activity of GMI-1687 following IV or SC Dosing on Adherent hSSRBCs in Indflamed Venules

R. Zennadi, Duke University
Assessment of GMI-1687 for Attenuation of Vaso-Occlusion in the Townes Mouse Model of Human SCD

- The Townes mice have a transgene containing normal human α, γ, δ globins and sickle β globin and targeted deletions of murine α & β globins (α-/-, β-/-). This mouse model of SCD expresses exclusively human sickle hemoglobin.
 - ~100% sickle RBCs
 - Erythrocytes have significantly decreased osmotic fragility and increased dynamic rigidity
 - Anemic with hematocrits ~65% of WT mice
 - Baseline inflammation as evidence by vascular congestion, atrophy, fibrosis, and infarct found in lungs, liver, spleen and kidneys

R. Zennadi, Duke University
GMI-1687 Attenuates Sickle RBC Adhesion and Vessel Occlusion in the Townes Mouse Model of Human SCD

Cell Adhesion

Vessel Occlusion

R. Zennadi, Duke University
E-selectin plays a dominant role initiating the vaso-occlusive crisis in sickle cell disease

GMI-1687 is a highly potent small molecule antagonist for E-selectin with a binding constant (K_D) of 2.3 nM

GMI-1687 is completely bioavailable through subcutaneous dosing opening up the possibility of self administration.

In a mouse model of vaso-occlusive crisis using human sickle rbc’s in nude mice, GMI-1687 blocks adherence of these cells and normalizes blood flow.

In a transgenic mouse model containing human sickle hemoglobin (Townes mice), treatment with GMI-1687 inhibits induced vaso-occlusive crisis by blocking adherence of cells and normalizing blood flow.

GMI-1687 contains desired properties that are compatible with very early treatment of a crisis outside the hospital setting. Early treatment is critical for VOC, see:

Thank You

John L. Magnani

jmagnani@glycomimetics.com
Ph: 240-938-0357